自2013年德国提出了“工业4.0”的概念后,以两化融合为特点的第四次工业革命的趋势也愈加明显。智能工厂的建设前提是数字化工厂中从顶层到底层的系统集成和数据贯通,将数字信息结合人工智能的算法,深度挖掘数据内涵,才能逐步形成智能化的应用。荃面实现数字化是通向智能制造的必由之路,“数据”是智能化的基础,数据的应用关系到数字化工厂的质量、效率和效益,也是迈向智能制造的必经之路。
数字化工厂的基本特点是业务流与信息流的融合,一是从产品设计(产品数据管理系统TC)、资源配置(企业资源计划系统ERP)、制造执行(制造执行系统MES)及底层生产线的业务流全部实现数字化的格式。
实现和传递[2];二是从产品生产过程中生成并采集上来的各种数据可以回传归集,在管理平台上对数据进行分析,形成质量预警、管理问题的依据,用数据形成质量提升和管理改善的驱动力。
根据精益管理的“七零”项点,按照设备、安荃、质量、交付和成本五大方面(S2QDC),将采集上来的过程数据进行综合分析,形成评价各产线、各区域的考核内容汇总形成逐级所需的信息进行展示和推送,在设计、生产、质量和管理不同层级,按人员角色、管理层级对数据进行利用,形成推动企业发展的动力。
随着信息技术的进步,尤其是AI、5G技术的成熟应用[10],在中国制造2025国家战略和人口红利消退的时代背景下,数字化工厂的建设已是实现企业转型、提高核心竞争力的手段,在轨道行业建设“国家名片”的道路上,从电子、汽车产业等成熟产业的建设经验,打造新模式逐步推广应用:①企业数字化平台的数据贯通架构可以相互借鉴,在主流软件平台的应用上契合度较高。②基础数据的采集在不同行业不同企业的差异性较小,投资规模和平台模式相近的,的方式和方法值得推广和借鉴。③对于焊接厂房和设备设施密集型的车间,建议以有线网络为主,工位附近通过无线连接数据采集终端,如扫码枪、PAD等手持终端。④每个企业编制数字化工厂数据应用的管理规范和标准,数据应用只是工具,通过体系文件进一步规范管理、提升效益才是根本。